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DEDICATION

Professor K. Nagabhushanam was one of the two inspiring teachers I

had when I was pursuing my graduate studies in mathematics at the Andhra

University, Waltair. He and Professor V. Ramaswamy not only taught us

mathematics but also prepared us to think in terms of mathematics and to

use mathematics as an abstract logical method in solving complex problems

in any field of inquiry. This training was a great asset to me when I

started on my research career. I had kept in touch with Professor

Nagabhushanam after I left Andhra University as he was keenly interested

in my activities and often encouraged me in my research work. It is,

indeed, a great honor to contribute to the memorial volume of my respected

teacher. The contents of this chapter are specifically addressed to the

students and teachers of statistics who are looking for simple examples

to demonstrate some natural pitfalls in statistical data analysis and

inference.
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1. INTRODUCTION

In statistical inference, i.e., making statements about a population

on the basis of a sample drawn from it, it is necessary to identify the

holy trinity, viz., the sample space Q, Borel field of sets F defined on 2

and a family of probability measures P defined on F. Statistical analysis

is concerned with setting up a correspondence between a sample (a member

of Q) and an element (or subset of elements) of P. An important part of

the trinity is the specification P. Wrong specification may lead to wrong

inference, which is sometimes called the third kind of error in statistical

parlance.

The problem of specification is not a simple one. A detailed knowledge

of the procedure actually employed in acquiring data is an essential in-

gredient in arriving at a proper specification. The situation is more com-

plicated with field observations and nonexperimental data, where nature

produces events according to a certain stochastic model, and the events are

observed and recorded by field investigators. There does not always exist

a suitable sampling frame for designing a sample survey to ensure that the

events which occur have specified (usually equal) chances of coming into the

sample. In practice, all the events that occur in nature cannot be brought

into the sample frame. For instance, certain events may not be observable

and therefore missed in the record. This gives rise to what are called

truncated, censored or incomplete samples. Or an event that has occurred

may be observable only with a certain probability depending on the nature

of the event, such as its conspicuousness and the procedure employed

to observe it, resulting in unequal probability sampling. Or an event which

has occurred may change in a random way by the time or during the process

of observation so that what comes on record is a modified event, in which
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case the change or damage has to be appropriately modeled for statistical

analysis. Sometimes, events from two or more different sources having

different stochastic mechanisms may get mixed up and brought into the same

record, resulting in contaminated samples. In all of these cases, the

specification for the original events (as they occur) may not be appropriate

for the events as they are recorded (observed data) unless it is suitably

modified. Examples of such situations are given in Rao (1965, 1975, 1985).

In a classical paper, Fisher (1934) demonstrated the need for such an

adjustment in specification depending on the way data are ascertained. The

author extended the basic ideas of Fisher in Rao (1965) and developed the

theory of what are called weighted distributions as a method of adjustment

applicable to many situations. In this paper we discuss the general theory

and some recent developments through some examples.

2. TRUNCATION

Some events, although they occur, may be unascertainable, so that the

observed distribution is truncated to a certain region of the sample space.

For instance, if we are investigating the distribution of the number of eggs

laid by an insect, the frequency of zero eggs is not ascertainable. Another

example is the frequency of families where both parents are heterozygous for

albinism but have no albino children. There is no evidence that the parents

are heterozygous unless they have an albino child, and the families with

such parents and having no albino children get confounded with normal fami-

lies having no children. The actual frequency of the event zero albino

children is thus not ascertainable.

In general, if p(x,e) is the p.d.f. (probability density function for a

continuous variable or probability for a discrete variable), where e denotes
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an unknown parameter, and the random variable X is truncated to a specified IC
region Ta 2 of the sample space, then the p.d.f. of the truncated random vari-

able xTis

pT(x,) w(x,T)p(x,e) (2.1)
u(T,e)

where w(x,T) = 1 if x e T and = 0 if x T, and u(T,e) = E[w(X,T)]. The

expression (2.1) is the original probability density weighted by a suitable

function, and it provides a simple example of a weighted probability distri-

bution whose general definition is given in the next section.

Suppose the event zero is not observable in sampling from a binomial

distribution with index n and probability of success Tr. Let RT denote the

TB (truncated binomial) random variable. Then

T = r (n)7r(l-)n-r

P(R= r) r - r 1,...,n. (2.2)

For such a distribution

E(R) = nr and E(-) (2.3)
1 (I- )n n 1 - (I-)n (2.3)

T5 5.

which are somewhat larger than those for a complete binomial, for which the

above values are nr and T respectively.

The following data relate to the numbers of brothers and sisters in fami-

lies of the girls whose names were found in a private telephone notebook of

a European professor. (The first number within the brackets gives the number

of sisters including the respondent and the second number, that of her brothers. -1
V.

(,0), (I10), (1,), (,1), (1,1), (1,l), (1,1), (1,1), (1,1), (1,)

(1,1), (2,0), (2,0), (2,0), (2,1), (2,1), (2,1), (2,1), (1,2), (1,2) (2.4)

(3,0), (3,1), (3,1), (1,3), (1,3), (4,0), (4,1), (1,4)
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Since at least one girl is present in the family, we may try and see

whether the data conform to a TB distribution with the observation on zero

sisters missing. The expected number of girls under this hypothesis, assum-

ing r : 0.5, is

5
f(n)E(rln) (2.5)

n=l

where f(n) is the observed number of families with size n (i.e., the total

number of brothers and sisters). Using the formulas (2.3) and (2.5) and the

data (2.4), we have:

Number of observed expected

Sisters 47 46

Brothers 30 31

The observed figures seem to be in good agreement with those expected under

the hypothesis of truncated binomial. However, a different story may emerge

in a similar situation as in the following data giving the numbers of sisters

and brothers in the families of girl acquaintances of a male student in Calcutta.

(2,1), (1,1), (3,0), (2,0), (3,1), (1,0), (2,1), (1,0), (1,1), (l,l). (2.6)

The expected numbers of sisters under the hypothesis of truncated binomial

is 9.5 (using the formulas (2.3) and (2.5)) whereas the observed number is

17. The truncated binomial is not appropriate for the data (2.6) and it

appears that the mechanisms of encountering girls seem to be different in

the cases of the professor and the student.

Note that if we sample a number of households in a city and ascertain

the numbers of brothers and sisters (i.e., sons and daughters) in each

household, then we expect the number of sisters to follow a complete bi-

nomial distribution. If from such data we omit the households which do not

V N".



5

have girls, then the data would follow a truncated binomial distribution.

We shall see in the next section that a different distribution holds when

data are ascertained about the sibs from a sample of boys or girls one

encounters. The case of the student seems tc fall in such a category.

3. WEIGHTED DISTRIBUTIONS

In Section 2, we have considered a situation where certain events are

unobservable. But a more general casr is when an event that occurs has a

certain probability of being recorded (or included in the sample). Let X

be a random variable with p(x,e) as the p.d.f., where e is a parameter, and

suppose that when X = x occurs, the probability of recording it is w(x,)

depending on the observed x and possibly also on an unknown parameter l.

Then the p.d.f. of the resulting random variable Xw is

p W(x ses )  w(x,a)p(x,e) (3.1) ,

E[w(x,i)]

Although in deriving (3.1) we chose w(x,) such that 0 < w(x,a) < 1, we

may formally define (3.1) for any arbitrary nonnegative function w(x,a) for .4

which E[w(x,a)] exists. The p.d.f. so obtained is called a weighted version

of p(x) and denoted ')y pW(x). In particular the weighted distribution

pw(x,e) = f(x)p(x,e) (3.2)E f(x))(.2

where f(x) is some monotonic function of x, is called a size biased distri-

bution. When x is univariate and nonnegative, the weighted distribution

pW(xe6) = x~p(x,o) (3.3)

E (xac)

L~introduced in Rao (1965) has found applications in many practical problems
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(see Rao (1985)). When = 1, it is called a length (size) biased distribution. S

For example, if X has the logarithmic series distribution

, r = 1,2,... (3.4)-r log(l-c )

then the distribution of the length biased variable is

(_,n-1l(l-ct)a n - , r = 1,2,...

which shows that Xw - 1 has a geometric distribution. A truncated geometric

distribution is sometimes found to provide a good fit to an observed distribu-

tion of family size (Feller, 1968). But, if the information on family size

has been ascertained from school children, then the observations may have a

size biased distribution. In such a case, a good fit of the geometric distribu-

tion to the observed family size would indicate that the underlying distribu- 0

tion is, in fact, a logarithmic series.

Table 1 gives a list of some basic distributions and their size biased

forms. It is seen that the size biased form belongs to the same family as the

original distribution in all cases except the logarithmic series.

An extensive literature on weighted distributions has appeared since

the concept was formalized in Rao (1965); it is reviewed with a large number

of references in a paper by Patil (1984) with special reference to the earlier

contributions by Patil and Ra) (1977, 1978) and Patil and Ord (1976). Rao

(1985) contains an updated review of the previous work and some new results. 5

,,, ,.... .--.. .x, '. .', ' , 3,' ,' ' , '-, '' .' '.' '-'.', I ,,
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Table 1. Certain Basic Distributions and Their Size-Biased Forms
Random
variable (rv) pf (pdf) Size-biased rv

Binomial, nI)
B(n,p) ( _p)- I + B(n - I,p)

Negative binomial, ,k+ x-
NB(k,p) ee I + NB(k + I,p)

Poisson,
Po(A) e-"A lx I + Po(A)

Logarithmic series,
L(a) { - log(I -- a)) -I t r/x I +- NB( !, a)

Hypergeometric, (n) M2(N - M)H-
H(n,M,N) (x) J r I + H(n - 1,M- 1,N- 1)

Binomial beta, j(n# + x,y + n - x)

N egative bino i:ial + - f( O[ + , + ) I + N B B (k ,f,y)beta, NBB(k, , y) x P(a, y)

Gamma, G(, k) x1-e-"/r(k) G(at, k + 1)

Beta first kind,
B1 (6,y) r-I(I - x)'-/P(6,Y) B1(J + l,y)

Beta second kind,
B2 (6,Y) x -1 (I + x)-'/(6,y - 6) B2(0 + l,y -6 - 1)

Pearson type V,
Pe(k) x - - exp(-x-)/r(k) Pe(k - !)

Pareto, Pa(a, y) yax - ,+f'j, x > a Pa(e, - 1)

Lognormal, og x -p
LN(p,o 2) (2na 2)- 2 x-1 exp- ogLN(p_.+-

'
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4. p.p.s. SAMPLING

An example of a weighted distribution arises in sample surveys when un-

equal probability sampling or what is known as p.p.s. (probability propor-

tional to size) sampling is employed. A general version of the sampling

scheme involves two random varianbes X and Y with p.d.f. p(x,y,e) and a weight

function w(y) which is a function of y only, giving a weighted p.d.f.

pW(xye) = w(Y)p(x,y,O) (4.1)
E[w(Y)]

In sample surveys, we obtain observations on (XWYw) from the p.d.f. (4.1) and

draw inference on the parameter e.

It is of interest to note that the marginal p.d.f. of X w is S

pW(X,e) = w(x,e)p(x,o) (4.2)

which is a weighted version of p(x,e) with the weight function

w(x,e) = JP(YX)w(y)dy. (4.3)

If we have a sample of size n

(x (XnYn) (4.4)

from the distribution (4.1), then an estimate of E(X), the mean with respect B

to the original p.d.f. p(x,y,o), which is the parameter of interest, is

E[w(Y)] n x(iX (4.5)
n i=l w(yi)

which is an unbiased estimator of E(X). The estimator

n
1 x i  (4.6)i=I 1



9

would be an unbiased estimator of E(XW), the mean with respect to weighted

p.d.f. pw(xe) as in (4.3).

5. WEIGHTED BINOMIAL DISTRIBUTION: TWO EMPIRICAL THEOREMS

Suppose that we ascertain from each male member in a class or in any

congregation the number of brothers including himself and the number of sisters

he has and raise the following question. What is the approximate value of

B/(B+S), where B and S are the total numbers of brothers and sisters in all

the families of the male members? It is clear that we are sampling from a

truncated distribution of families with at least one male member so that

B/(B+S) should be larger than one half. But by how much? Surprisingly, when

k, the number of males asked, is not very small, one can make accurate pre-

dictions of the relative magnitudes of B and S, and of the ratio B/(B+S).

This may be stated in the form of an empirical theorem.

DrEpirical Theorem 1: Let k male members observed in any gathering have

a total number of B brothers (including themselves) and a total number of S

sisters. Then the following predictions can be made:

(i) B is much greater than S.

(ii) B - k is approximately equal to S.

(iii) B/(B+S) is larger than one half. It will be closer to

1 + k
f 2(B +S)T

(iv) (B-k)/(B+S-k) is close to half.

The roles of B and S are reversed if the data are ascertained from the

female members in a gathering.

-U-l1 '
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Consider a family with n children. Then on the assumption of a binomial

distribution with 1 = /2 and index n, the probability of r male children is

p(r) = ( 1)(n r= 0,1,2 (5.1)

In our case, there is at least one male child so that the appropriate

distribution is a truncated one. One possibility is a truncated binomial

(TB),

p - n r = 1,2,... (5.2)

1 - (1.2)

and another is a size biased binomial (WB)

n Ir(nr)(2In- n-I
pW(r) - rn2)_ (n-1 , n = (5.3)

(n/2) (n- in

In Rao (1977), it was argued that (5.3) is more appropriate for the observed

data than (5.2). Table 2 gives the observed frequency distributions of the

number of brothers in families of different sizes based on the data collected

separately from the male and female students in the universities at Shanghai

(China), Manila (Phillipines), and Bombay (India), and the expected values

on the hypotheses of TB as in (5.2) and WB as in (5.3).



Table 2. Observed frequencies of the number of brothers in families of
different sizes and expected frequencies under the hypotheses
of TB and WB distributions.

(Data from male students in Shanghai, Manila and Bombay)

n =l n = 2 n= 3

No. of expected expected expected
brothers observed TB WB observed TB WB observed TB WB

1 6 6 6 24 28.7 21.5 12 20.1 11.7

2 19 14.3 21.5 24 20.1 23.5

3 11 6.7 11.7
TOTAL 6 6 6 43 43.0 43.0 47 46.9 46.9

n =4 n 5 n= 6

No. of expected expected expected
brothers observed TB WB observed TB WB observed TB WB

1 8 11.2 5.3 5 6.5 2.5 1 1.9 0.6

2 10 16.8 15.7 8 12.9 10.0 4 4.8 3.1

3 17 11.2 15.7 15 12.9 15.0 4 6.3 6.3

4 7 2.8 5.3 10 6.5 10.0 9 4.8 6.3

5 2 1.3 2.5 2 1.9 3.1

6 0 0.3 0.6

TOTAL 42 42.0 42.0 40 40.1 40.0 20 20.0 20.0 6

It is seen from the above table that the WB (weighted binomial) provides a

better fit than the TB (truncated binomial) indicating that a family with r

brothers is sampled with probability proportional to r.

Accepting the hypothesis of the weighted (size biased) binomial, viz.,

(nl()n-i

p(r) = )(_ , n = 1,2,...,n, (5.4)

x . -- 2)
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we immediately find that

E(rin)n+l =; E(r-1) - 2 (5.5)E r I rr-1~z T 2 2
r= 1

If (rl,n,), ..., (rk,nn) are observed data with B = rI + ... + rk,

T = n1 + ... + nk and S =T -B, then for given T

k kn.-I
E(B-k) =E(ni-l) =2 T- E(S). (5.6)

E(B) = T+k E(B) EB . + k (5.7)
2' T B+S) 2 -2B + (-T

Removing the expectation signs in (5.6) and (5.7), we can assert approximate

equalities as stated in Empirical Theorem 1.

During the last twenty years, while lecturing to students and teachers

in different parts of the world, I collected data on numbers of brothers and

sisters in the family of each individual in my audience. The results are

summarized in Tables 3, 4 and 5. It is seen that the predictions as given

in the empirical theorem are true in practically every case. As a further

test of the weighted binomial, the statistic

x2 := .4([B-k] - [(T-k)/2])2 (5.8)

which is asymptotically distributed as Chi-square on one degree of freedom
is calculated in each case. The Chi-squares are all small providing evidence

in favor of the weighted binomial distribution. [Actually, the Chi-squares

are too small which needs further study of the mechanism generating the observed

data.]

The situation is slightly different in Table 5 relating to the data on
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professors. The estimated proportion is more than half in each case, and

the Chi-square values are high; this implies that the weight function

appropriate to these data is of a higher order than n, the number of brothers.

Male professors seem to come from families where sons are disproportionately

more than the daughters!

Table 3. Data on Male Respondents (Students)*
B B-kb 2 .

Place and year k B S b + 2

B +S B +S - k

Bangalore (India, 75) 55 180 127 .586 .496 .02
Delhi (India, 75) 29 92 66 .582 .490 .07
Calcutta (India, 63) 104 414 312 .570 .498 .04
Waltair (India, 69) 39 123 88 .583 .491 .09 5
Ahmedabad (India, 75) 29 84 49 .632 .523 .35
Tirupati (India, 75) 592 1902 1274 .599 .484 .50
Poona (India, 75) 47 125 65 .658 .545 1.18
Hyderabad (India, 74) 25 72 53 .576 .470 .36
Tehran (Iran, 75) 21 65 40 .619 .500 .19
Isphahan (Iran, 75) II 45 32 .584 .515 .06
Tokyo (Japan, 75) 50 90 34 .725 .540 .49
Lima (Peru, 82) 38 132 87 .603 .519 .27
Shanghai (China, 82) 74 193 132 .594 .474 .67
Columbus (USA, 75) 29 65 52 .556 .409 2.91
College St. (USA, 76) 63 152 90 .628 .497 .01

Total 1206 3734 2501 .600 .503 0.14

k= number of students, B- total number or brothers including the respondent, S -total
number of sisters.

Estimate of x under size biased binomial distribution.
B

Table 4. Data on Female Respondents (Students)
k BS S- k

Place and year k B S S S k
B +S B +S -k

Lima (Peru, 82) 16 37 48 .565 .464 .36
Los Banos (Philippines, 83) 44 101 139 .579 .485 .18
Manila (Philippines, 83) 84 1'97 281 .588 .500 .00
Bilbao (Spain, 83) 14 19 35 .576 .525 .10
Shanghai (China, 82) 27 28 55 .662 .500 .00
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Table 5. Data on Male Respondents (Professors)
B B-k

Place and year k B S B
B+S B+S-k

State College (USA, 75) 28 80 37 .690 .584 2.53
Warsaw (Poland, 75) 18 41 21 .660 .525 2.52
Poznan (Poland, 75) 24 50 17 .746 .567 1.88
Pittsburgh (USA, 81) 69 169 77 .687 .565 2.99
Tirupat, ndia, 76) 50 172 132 .566 .480 0.39
Maracaibo (Venezuela, 82) 24 95 56 .629 .559 1.77
Richmond (USA, 81) 26 57 29 .663 .517 0.03
Total 239 664 369 .642 .535 3.95

Note 1. From (5.7), the expected value of.the ratio B/(B+S) for given aver-

age family size f = (B+S)/k is as follows for different values of f:

f: 1 2 3 4 5 6

E-L) : 1 .75 .67 .625 .6 .58

These figures show that in any given situation where the average family size

is not likely to exceed 6, the following predictions can be made about the

total number of brothers (B) and of sisters (S) ascertained from the male

members in any gathering:

(i) B is much greater than S.

(ii) B/(B+S) is closer to 0.6 or even 2/3 rather than to 1/2.

Surprisingly, these predictions hold even if k, the number of males in a gather-

ing, is small. [This will be a good classroom exercise or a demonstration

piece in any gathering. One can make these predictions in advance and demon-

strate the accuracy of predictions after collecting the data from male (or

female) members.]

Note 2. The probabilities for B > S, B = S, B < S in the case of a weighted

binomial distribution for n = 1,2,... are given in Table 6.

• , - . "- , ,



15

Table 6. Probabilities of B > S, B = S and B < S

n 1 2 3 4 5 6 7 8 9 10

B>S 1 1 3 1 11 1 42 1 163 1B T Y T2 T 2 64 7 56

B=S 0 1 0 0 10 05 0 126
2128 56

BlS 0 0 1 1 5 6 22 29 93 121
4 8 -6 3 64 128 256 512

It is seen that P(B>S) is much larger than P(B<S) for each n so that in any

given audience, the ratio of b (males belonging to families with B > S) tog

bk (those with B > S) is likely to be large, depending on the distribution of

family sizes. We may now state another empirical theorem.

Enpirical Theorem 2. The numbers b and b . are approximately in the

ratio of

E(bg) = Pl + P3 
+ 1P 5 + "" + 1(P 2 

+ P4 + ' )' (5.9)

to

E(b) 1 +1 +** (5.10)
P3 + P4+.,

where pn is the number of families with n children. In western audiences

where the expected family size is small, the ratio b : b9 is likely to be

even larger than 4 : 1 and in oriental audiences larger than 2 : 1, which are

quite high compared to 1 : 1. [This phenomenon can be predicted and verified

by asking the members of an audience to indicate by show of hands how many

belong to the category B > S and how many to B < S. This will be a good

classroom exercise or a demonstration piece in any gathering.]

Note 3. Let p(b,n) be the probability that a family is of size N = n and the

number of brothers B = b, and suppose that the probability of selecting such

a family is proportional to b. Then
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pW(bn) bp(b,n) = bp(n)p(bln)
E(B) E(B) (5.11)

pW(n) - E(BIn) (5.12)
E(B) p(n).

When p(bln) is binomial

pW(n) = (5.
(5.13)

E _ 1
w n E(N)

so that the harmonic mean of observations nl, ..., nk on Nw, i.e., from the

distribution (5.11) or (5.12),

kIk (5.14)

n.i

is an estimate of E(N) in the original population. If the form of p(n) is

known, then one could write down the likelihood of the sample nl, ..., nk

using the probability function (5.12) and determine the unknown parameters

by the method of maximum likelihood.

6. ALCOHOLISM, FAMILY SIZE, AND BIRTH ORDER

Smart (1963, 1964) and Sprott (1964) examined a number of hypotheses on

the incidence of alcoholism in Canadian families using the data on family

size and birth order of 242 alcoholics admitted to three alcoholism clinics

in Ontario. The method of sampling is thus of the type discussed in Section 5.

One of the hypotheses tested was that larger families contain larger

numbers of alcoholics than expected. The null hypothesis that the number of

alcoholics is as expected was interpreted to imply that the observations on

family size as ascertained arise from the weighted distribution
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np(n)/E(n), n = 1,2,..., (6.1)

where p(n), n = 1,2,..., is the distribution of family size in the general

population. Smart and Sprott used the distribution of family size as report-

ed in the 1931 census of Ontario for p(n) in their analysis. It is then a

simple matter to test whether the observed distribution of family size in

their study is in accordance with the expected distribution (6.1).

It may be noted that the distribution (6.1) would be appropriate if we

had chosen individuals (alcoholic or not) at random from the general popula-

tion (of individuals) and ascertained the sizes of the families to which they

belonged. But it is not clear whether the same distribution (6.1) holds if

the inquiry is restricted to alcoholic individuals admitted to a clinic, as

assumed by Smart and Sprott. This could happen, as demonstrated below, under

an interpretation of their null hypothesis that the number of alcoholics in

a family has a binomial distribution (like failures in a sequence of indepen-

dent trials), and a further assumption that every alcoholic has the same in-

dependent chance of being admitted to a clinic.

Let Tr be the probability of an individual becoming an alcoholic, and

suppose that the probability that a member of a family becomes an alcoholic is

independent of whether another member is alcoholic or not. Further let p(n),

n = 1,2,..., be the probability distribution of family size (whether a family

has an alcoholic or not) in the general population. Then the probability that

a family is of size n and has r alcoholics is

p(n)(n),rrn-r  r = 0,...,n, n = 1,2,..., (6.2)r

where ¢ = (1-n). From (6.2), it follows that the distribution of family size

in the general population, given that a family has at least one alcoholic, is
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(l-_n)p(n) n = 1,2,... (6.3)

I - E( n )

If we had chosen households at random and recorded the family sizes in house-

holds containing at least one alcoholic, then the null hypothesis on the ex-

cess of alcoholics in larger families could be tested by comparing the observed

frequencies with the expected frequencies under the model (6.3). However,

under the sampling scheme adopted of ascertaining the values of n and r from an

alcoholic admitted to a clinic, the weighted distribution of (n,r),

pW(n,r) = rp(n) (n )1r n-r
r )  E(n) ' (6.4)

is more appropriate. If we had information on the family size n as well as on

the number of alcoholics (r) in the family, we could have compared the observed

joint frequencies of (n,r) with those expected under the model (6.4).

From (6.4), the marginal distribution of n alone is

np(n)/E(n), n = 1,2,..., (6.5)

which is used by Smart and Sprott as a model for the observed frequencies of

family sizes. It is shown in (6.3) that in the general population, the dis-

tribution of family size in families with at least one alcoholic is

(1 _n) p~n)
1- E( n )

which reduces to (6.5) if 0 is close to unity. In other words, if the proba-

bility of an individual becoming an alcoholic is small, then the distribution

of family size as ascertained is close to the distribution of family size in

families with at least one alcoholic in the general population. This is not

true if € is not close to unity.

Smart and Sprott found that the distribution (6.5) did not fit the observed
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frequencies, which had heavier tails. They concluded that larger families

contribute more than their expected share of alcoholics. Is this a valid

conclusion? It is seen that the weighted distribution (6.5) is derived under

two hypotheses. One is that the distribution of family size in the subset of

families having at least one alcoholic in the general population is of the

form (6.3) which is implied by the original null hypothesis posed by Smart.

The other is that the method of ascertainment is equivalent to p.p.s. sampling

of families, with probability proportional to the number of alcoholics in a

family. The rejection of (6.5) would imply the rejection of the first of

these two hypotheses if the second is assumed to be correct. There are no

a priori grounds for such an assumption, and in the absence of an objective

test for this, some caution is needed in accepting Smart's conclusions.

Another hypothesis considered by Smart was that the later-born children

have a greater tendency to become alcoholic than the earlier-born. The

method used by Smart may be somewhat confusing to statisticians. Some comments

were made by Sprott criticizing Smart's approach. We shall review Smart's

analysis in the light of the model (6.4). If we assume that birth order has

no relationship to becoming an alcoholic, and the probability of an alcoholic

being referred to a clinic is independent of the birth order, then the proba- ,

bility that an observed alcoholic belongs to a family with n children and r

alcoholics and has given birth order s < n is, using the model (6.4),

s = l,...,n, r = l,...,n, n = 1,2,... (6.6)

Summing over r, we find that the marginal distribution of (n,s), the family ,

size and birth order, applicable to the observed distribution, is

p(n)/E(n), s = 1,...,n, n =  1,2,..., (6.7)

where it may be recalled that p(n), n 1,2,..., is the distribution of family

.1
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size in the general population. Smart gave the observed bivariate freqen-

cies of (n,s), and since p(n) was known, the expected v.lues could have

been computed and compared with the observed. But, he did something else.

From (6.7), the marginal distribution of birth rank is

M
EIn) I p(i), r = 1,2,... (6.8)E-- i =r

Smart's (1963) analysis in his Table 2 is an attempt to compare the observed

distribution of birth ranks with the expected under the model (6.3) with p(i)

itself estimated from data using the model (6.1).

A better method is as follows: from (6.7) it is seen that for given family

size, the expected birth order frequencies are equal as computed by Smart (1963)

in Table 1, in which case individual Chi-squares comparing the expected and

observed frequencies for each family size would prnvide all the information

about the hypothesis under test. Such a procedure would be independent of any

knowledge of p(n). But it is not clear whether a hypothesis of the type posed

by Smart can be tested on the basis of the available data without further in-

formation on the other alcoholics in the family, such as their age, sex, etc.

Table 6 reproduces a portion of Table 1 in Smart (1963) relating to fam-

ilies up to size 4 and birth ranks up to 4. It is seen th,,t for family sizes

2 and 3, the observed frequencies seem to contradict the hypothesis, and for

family sizes above 3 (see Smart's Table 1), birth rank does not have any

effect. It is interesting to compare the above data with a similar type of

data (Table 7) collected by the author on birth rank and family size of the

staff members in two departments at the University of Pittsburgh. It appears

that there are too many earlier-borns among the staff members, indicating

that becoming a professor is an affliction of the earlier born! It is ex-

pected that in data of the kind we are considering there will be an excess

n m d-iiolinlliii~ ~~~~............l................................. " '" """""" '- " " " e



21

of the earlier born without implying an implicit relationship between birth

order and a particular attribute, especially when it is age dependent.

Table 6. Distribution of Birth Rank s and Family Size n'
n=! 2 3 4

0 0 E 0 E 0 E 0 E
1 21 21 22 16 17 13.3 II 11.75
2 10 16 14 13.3 10 11.75
3 9 13.3 13 11.75
4 13 11.75

0 = observed, E = expected.

Table 7. Distribution of Birth Rank s and Family Size n 4 Among Staff
Members (University of Pittsburgh)

s n=l 2 3 4

! 7 14 9 6
2 6 4 2
3 2 0
4 0

7. WAITING TIME PARADOX

Patil (1984) reported a study conducted in 1966 by the Institute National

de la Statistique el de l'Economie Appliquee in Morocco to estimate the mean

sojourn time of tourists. Two types of surveys were conducted, one by contact-

ing tourists residing in hotels and another by contactinq tourists at frontier

stations while leaving the country. The mean sojourn time as reported by 3,000

tourists in hotels was 17.8 days, and by 12,321 tourists at frontier stations

was 9.0. Suspected by the officials in the department of planning, the esti-

mate from the hotels was discarded.

It is clear that the observations collected from tourists while leaving

the country correspond to the true distribution of sojourn time, so that the

observed average 9.0 is a valid estimate of the mean sojourn time. It can be

shown that in a steady state of flow of tourists, the sojourn time as report-
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ed by those contacted at hotels has a size biased distribution, so that the v.

observed average will be an overestimate of the mean sojourn time. If Xw

is a size biased random variable (r.v.), then

E(Xw = -1 (7.1)

where V is the expected value of X, the original variable. The formula (7.1)

shows that the harmonic mean of the size biased observations is a valid esti-

mate of V. Thus the harmonic mean of the observations from the tourists in 0

hotels would have provided an estimate comparable with the arithmetic mean

of the observations from the tourists at the frontier stations.

It is interesting to note that the estimate from hotel residents is

nearly twice the other, a factor which occurs in the waiting time paradox

(see Feller, 1966; Patil and Rao, 1977) associated with the exponential dis-

tribution. This suggests, but does not confirm, that sojourn time distribu-

tion may be exponential.

Suppose that the tourists at hotels were asked how long they had been

staying in the country up to the time of inquiry. In such a case, we may

assume that the p.d.f. of the r.v. Y, the time a tourist has been in a country

up to the time of inquiry, is the same as that of the product XWR, where Xw

is the size biased version of X, the sojourn time, and R is an independent r.v. %

with a uniform distribution on [0,I]. If F(x) is the distribution function

of X, the the p.d.f. of Y is

-l[l F(y)]. (7.2)

The parameter p can be estimated on the basis of observations on Y, provided

the functional form of F(y), the distribution of the sojourn time, is known.

It is interesting to note that the p.d.f. (7.2) is the same as that

obtained by Cox (1962) in studying the distribution of failure times of a

component used in different machines from observations of the ages of the
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components in use at the time of investigation.

8. DAMAGE MODELS

Let N be a r.v. with probability distribution, prn' n : 1,2,..., and R

be a r.v. such that

P(R=rJN=n) = s(r,n). (8.1)

Then the marginal distribution of R truncated at zero is

P' = (1-p- 1 Pn s(r,n), r = 1,2 (8.2)

r n~r0 n

where

P : ZPis(O,i). (8.3)
1

The observation r represents the number surviving when the original observa-

tion n is subject to a destructive process which reduces n to r with proba-

bility s Such a situation arises when we consider observations on family

size cou ng only the surviving children (R). The problem is to determine

the distribution of N, the original family size, knowing the distribution of R

and assuming a suitable survival distribution. S

Suppose that N- P(X), i.e., distributed as Poisson with parameter A, and

let R-B(-,), i.e. binomial with parameter 7t. Then

e = e  ( ) r = 1,2 (8.4)

It is seen that the parameters x and x get confounded, so that knowing the

distribution of R, we cannot find the distribution of N. Similar confounding

occurs when N follows a binomial, negative binomial, or logarithm series dis-

tribution. When the survival distribution is binomial, Sprott (1965) gives
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a general class of distributions which has this property. What additional

information is needed to recover the original distribution? For instance,

if we know which of the observations in the sample did not suffer damage,

then it is possible to estimate the original distribution as well as the

binomial parameter r.

It is interesting to note that observations which do not suffer any

damage have the distribution
S

r cp r 7r (8.5)

which is a weighted distributior. If the original distribution is Poisson,

then

u e- (()r
r r!(l-e -lr) (8.6)

which is the same as (8.4). It is shown in Rao and Rubin (1964) that the

u
equality pr = Pr characterizes the Poisson distribution.

The damage models of the type described above were introduced in Rao

(1965). For theoretical developments on damage models and characterization

of probability distributions arising out of their study, the reader is re-

ferred to Alzaid, Rao and Shanbhag (1984).

9. QUADRAT SAMPLING WITH VISIBILITY BIAS

For the purpose of estimating wildlife population density, quadrat

sampling has been found generally preferable. Quadrat sampling is carried

out by first selecting at random a number of quadrats of fixed size from

the region under study and ascertaining the number of animals in each.

Following Cook and Martin (1974) we make the assumptions as given below:
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A1 : Animals occur in groups within each quadrat and the number of groups

within a quadrat has a specified distribution.

A2 : The number of ani'as in a group has a specified distribution.

A3 : The number of groups within a quadrat and the number of animals

within the groups are all independently distributed.

A4 : The method of sampling is such that the probability of sighting

(recording) a group of x animals is w(x).

Let X and Xw be the r.v.'s representing the number of animals in a group

in the population and as ascertained. Similarly, let N and N W be the r.v.'s

for the number of groups within a quadrat. It is clear that since the method

of ascertainment does not give equal chance of selection to groups of all

w
sizes (unless w(x) is constant), the r.v.'s X and X do not have the same

distribution, and so is the case with N and NW. The following theorem pro-

vides the basic results in quadrat sampling theory.

THEOREM. Under the assumptions AI-A 4 we have the following results.

i) P(Nw = m lN= n) = (n)wm(-)n-m

where

W = w(x)P(X= x)

is the visibility factor (the probability of recording a group).

(ii) P(Nw=m) = Z (,m( -)mP(N=n),

n=m M

i.e., the visibility bias induces an additive damage model on the true quadrat

frequency with binomial survival distribution (see Rao 1965).

(iii) The probability that m observed groups in a quadrat have xl , ... , xm

animals is
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ww m wpx

P(Xl :xl,...,X m  Xm m) = H P(XW= x.)i=l

where it may be noted,

P(Xw=x) = w(x)P(X= x)/W.

(iv) Let Sw: XW + + XW. Then
1 m

P(XW=y) = P(NW =m)P(SW=ylm)
m=l

P(Wyl)w(x 1 ) w(xm)
P(s w = y m)  I ( ... W P(X1 xI ) "" P(Xm=Xm).

Ex i =y 
W

Proof. Under the assumptions and notations used, we have the basic

probability equation

P(N=n, NW=m, Xl=Xl,...,Xm Xm+l:Xm+I, ..., Xn x n) -

m n
P(N=n)(n) I, P(Xjxj)w(xj) 1 [l-w(x.)]P(Xj=xj). (9.1)

m 3=1 j=m+l

From (9.1) summing out Xm+l , ..., Xn we have

w Xw

P(N=n, Nw = m, Xl = xil,..., m = xm

mn m n-inm
P(N=n)(m)m (1-w) j ll P(X :xj). (9.2)

Then the results (i), (ii) and (iii) of the theorem follow from (9.2). Summing

(9.2) over n from m to -, we have

m Xw x)M

P(N m, Xw=x1 ,...Xx = P(Nw m) 11 P(Xw=x (9.3)
from 1 whichm t r mh s jul (vflw

from which the result (iv) follows.,'
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Note 1. The expression (9.3) enables us to write down the joint likelihood

of the numbers of groups observed in different quadrats and the numbers of

animals observed in all the groups sighted. Thus, if mil, ..., mk are the

numbers of groups in k quadrats and xij is the number of animals in the j-th

quadrat, the joint likelihod is the product of

k11 P(Nw m i  (9.4)

i=l

and

k mi
11 11 P(X~ x. (9.5)

i=l j=l 1i ij

Results (ii) and (iii) of the theorem give the methods of computing the in-

dividual terms in (9.4) and (9.5) from the population distributions of N and

X and the weight function w(x). In general, the unknown parameters are those

occurring in the specified distributions of N and X and the additional visi-

bility factor w (or p the probability of sighting an animal). All these

could be estimated using the product of (9.4) and (9.5) as the likelihood

function.

Note 2. Cook and Martin (1974) consider the special case where

N-Po), Poisson with parameter A, (9.6)

X- aX x/g(e), power series distribution, (9.7)

w(x) 1 - (l-B)X.  (9.8)

It may be noted that whatever w(x) may be, Nw. P0 (6), 6 = xw where

: XS W(x)ex/g(e) and Xw ax w(x)ex/Wg(e).

Thus, there are three parameters 6, w and e. Then the parameter 6 is estimated
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from the likelihood (9.4) and w, e from (9.5). Cook and Martin (1974)

provided the necessary computations in such a case, choosing w(x) as in

(9.8).

If N is not a Poisson variable, then the distribution of Nw involves

w as an additional parameter (see Rao (1965) and Sprott (1965)), in which case

the product of (9.4) and (9.5) provide the joint likelihood for the estima-

tion of all the unknown parameters.

In the special case where N and X are as distributed in (9.6) and (9.7)

respectively and w(x) = ax (i.e., when a group is observed if and only if

all the animals are sighted),

Nw ~ PO(6), 6 = A and Xw-a xx/g(f), =8e

so that the parameters X, 0 and $ are confounded and are not individually

estimable.

10. THE STORY OF BROKEN BONES

The following problem arose in the analysis of measurements on femur

bones recovered from an ancient graveyard. When a femur bone was found

intact it was possible to take three measurements, length L, breadth of the

top tip B and breadth of the bottom tip T. But when a broken piece was

found, either the measurement B or the measurement T could be taken. Thus,

the observed data was incomplete with either the measurement B alone or T

alone on some and all three L, B, T on others. How does one estimate from

the fragmentary data of the above type the mean values and second order

moments of L, B, T in the original population of femur bones?

Let p(z,b,t) be the p.d.f. of L, B, T in the original population with

the associated marginal densities
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p(b) = Jp(z,b,t)dzdt and p(t) = fp(z,b,t)dzdb. (10.1)

If the probability that a bone gets broken does not depend on its dimensions,

then the likelihood of the observed data could be written down using the

p.d.f.'s, p(z,b,t), p(b) and p(t), depending on the available measurements

on each specimen. However, it may happen that the longer bones have a greater

chance of being broken; such a phenomenon was demonstrated in a similar situ-

ation on skull measurements by Rao and Shaw (1948) and Rao (1978). In such

a case we may have to distinguish the measurements Ls , Bs, Ts taken on well

preserved (surviving) bones and measurements Ld, B d, Td associated with the

damaged bones and denote their p.d.f.'s with superfixes s and d respectively.

We suppose that the chance of survival of a femur bone of length z is

s(t) depending only on t. Then

pS(t,b,t) = &-p(t,b,t)s(t), a = E[s(k)]. (10.2)

Similarly

pd(t,b,t) = ((-I)p(zbt)(-s(0) (10.3)

From (10.2) and (10.3), the following are immediately deduced:

pS(z) = 0-1 p(O)s(M,

pS(b,tI) = p(b,t2),

pS(b,t) = f-lp(b,t)p(k)s(k)dk

= j'-lp(b,t)p(Ibt)s(t)dz = p(b,t)w(b,t),

. . . . -'p..

pS(zIb,t) = p(.,b,t)s( ) # p(tIb,t),
fp(1,b,t)s(i)d.

pd(b,tlz) = p(b,tIj),
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pS or d(b) = p(b) and pS or d(t) = p(t),

d p(z,b,t)(l-s(z)) 4p(zb,t)"

Pd(tlb't) fp(t,b,t) Ol-s())dt

It is interesting to note that all distributions involving L as a main

variate are weighted. One casualty of this result is that the regression

of L on (B,T) estimated from the complete sets of samples on L, B, T does

not correspond to the true regression of L on (B,T) in the original popula-

tion of femur bones. But others like

pS(b,t.), pd(b,tif), pS or d(b), pS or d(t) (10.4)

are independent of s(z), and the properties of these distributions could be

used to estimate all the unknown parameters when s(t) is unknown.

For instance using all the available measurements on B and T (both on

damaged and well preserved bones), the mean values VB and PT of B and T in

the original population could be estimated by the usual averages. From the

observations on the complete set of L, B and T we can estimate the regressions

of B on L and T on L in the usual way. Then the missing values of L can be

estimated in each case, i.e., where B alone or T alone is available, by

inverse regression using the regression equation of B on L or T on L. Now

the average of the observed values of L and the estimated values of L in

missing cases is computed as an estimate of 'L , the mean value of L in the

original population. In a similar manner the second order moments can be

estimated using the relationships between the parameters of the original

distribution of L, B and T and of the conditional distributions (10.4).

•4
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13. CALCUTTA BLACKOUT DISTRIBUTION
S

Suppose that we are conducting an experiment to measure the time taken

for a certain event to happen, and for running the experiment a continuous

supply of electric power is needed. If the power supply is cut off before

the event happens, then the experiment has to be abandoned and no observa-

tion gets recorded. What distribution do the recorded observations result-

ing only from the successful experiments (when the power supply is on until

the event occurred) obey?

Let f(x) be the p.d.f. of X, the time taken for an event to happen, and

g(t) be the p.d.f. of T, the time at which the electric supply may fail (in

Calcutta this is a random phenomenon producing a blackout). An observation

on X gets recorded only when a pair (x,t) occurs such that x < t. The p.d.f.

of a pair (X,T) such that X < T is

f(x)g(t) (I IP(X <T)"

so that the p.d.f. of the recorded variable X(r) isf(r)(x = f(x)g(t)dt f (X)(I-G (x)_

x P(X<_ T)It P X<T) (11.2)

I 4

where G(t) is the distribution function of T. The distribution (11.2) is a

weighted version of the distribution of X, which I termed as the Calcutta

Blackout Distribution (CBD).

If we have observations from successful experiments alone, then the % -

relevant distribution is (11.2). However, in such a situation other observa-

tions could be made. The appropriate distributions when additional information

is available are discussed below.

If we define a random variable Z = min(X,T), then it is observable in

each experiment. The p.d.f. of Z is

• " 'T ,r , "" " " . , .F " . . .- - r~w ," - . ",r .- - . W" W""." W' , "I
W
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d r f(x)g(t)dxdt = [1 -F(z)]g(z) + [1-G(z)]f(z) (11.3)

which is a mixture of weighted distributions.

In the experiment described above, there is also the possibility of

recording Z, = min(X,T) with the identifying symbol whether the true obser-

vation is on X or T. In such a case the p.d.f. of Z, is

f(z)(l-G(z)) if z is an observation on X, (.h~(z) =(11.6)

:g(z)(l-F(z)) if z is an observation on T.

12. CLOUDED DISTRIBUTIONS

When the sea-surface temperature is measured by a satellite, there is

a possibility that the reading is effected by a cloud cover resulting in

reduced values of temperatures. The amount by which a measurement is scaled

down depends on the thickness of the cloud. But when a large number of

measurements are taken in a given area, there will be a proportion of data

which is free from cloud contamination while the rest are effected by clouds

of different thickness. If p(x) is the true distribution of the sea-surface

temperatures, whose average we are seeking, q(c), 0 < c < 1, is the p.d.f.

of cloudiness in the area under cloud cover and X is the proportion of the

area without cloud cover, then the p.d.f. relevant to the observed tempera-

tures is

Xp(t) + (1-) f p(1)q(c)dc. (12.1)

The proportion A and the p.d.f. q(c) are generally unknown in any given situ-
ation, and modelling the entire data for the unknown elements is extremely

difficult. However, when A is large, the distribution (12.1) is dominated

by p(t) in the right tail, and this can be judged by the smoothness of the

'q* N".4 A.
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histogram of the observed data relating to large values of the temperature.

When this happens, we can consider the data in the tails of the histogram

as uncontaminated observations and use them only in estimating the mean

sea-surface temperature. Such a technique was used by Smith, Rao, Koffler

and Curtis (1970). They assumed that the temperature distribution is normal
2' 2

(with mean P and variance a2) and an estimate of 2 is available from a

different source, and equated the observed (estimate) point of inflexion in S.

the right tail of the smoothed histogram to V + a, which provided an estimate

of -P. An alternative method is to consider a truncation point T and estimate

the mean using only the observations which are equal to or exceeding T. The

estimate of p in such a case satisfies the equation

aZ(Ti-)
+ a (12.2)

where t is the average of observations greater than or equal to T. We denote
T

the solution of (12.2) by 1 . Then we draw the graph of i against T and
T Tr

choose that value of x, say T0 , from where the graph shows a tendency to be

parallel to the T axis. The estimate of V is taken as i0
To
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